Exercise 1 week 4

You want to measure the optical decay of a quantum dot sample. For this purpose you are using a Silicon pin photodiode which you hook up to a $50\,\Omega$ oscilloscope. The diode has an intrinsic region that is $25\,\mu m$ long, the diameter of the device is 1 mm and you are applying 5V in reverse bias. You excite the quantum dot with a repetition rate of 170 MHz (period 6 ns) and collect the quantum dot emission on the photodiode. A snapshot of the trace is shown in figure 1.

- a) Clearly the decay is biexponential. What is the decay time of the fast and slow component?
- b) Based on your knowledge of the response time of the photodiode; do you think these decay times represent a true process or could they be measurement artifacts?
- c) How could you improve the measurement?

For these questions you might need some material data which you find on the back.

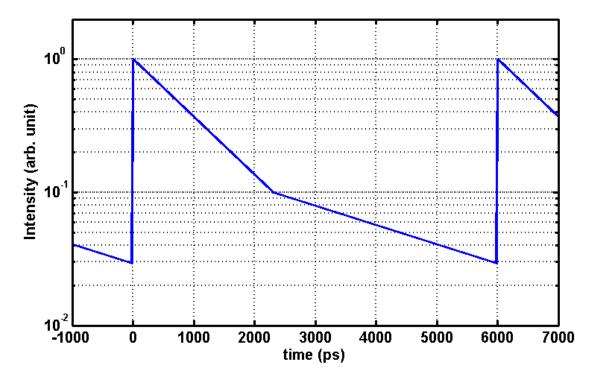
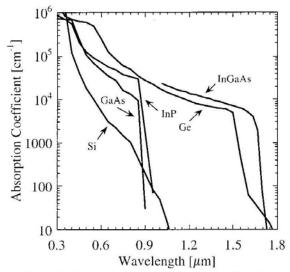



Figure 1

Relative dielectric constant Refractive index near E_g Absorption coefficient near E_g	Electron effective mass Heavy hole effective mass	Electron affinity Minority carrier lifetime	Hole diffusion constant	Hole mobility Electron diffusion constant	Electron mobility	Effective DOS at VB edge	Effective DOS at CB edge	Intrinsic carrier concentration	Bandgap energy	Lattice constant	Gap: Direct (D) / Indirect (I)	Crystal structure	Quantity
$\frac{\varepsilon_{r}}{n} =$	$m_e^* = m_{hh}^* =$	$=\frac{1}{\chi}$	$D_{ m p}^{"}=$	$D_{n} = D_{n}$	$\mu_n =$	$N_{_{\!$	$N_{\rm c} =$	$n_i =$	$E_{\rm g} =$	$a_0 =$			Symbol
11.9 3.3 10 ³	$0.98 m_{\rm e} \\ 0.49 m_{\rm e}$	$\frac{4.05}{10^{-6}}$	12	450 39	1500	1.0×10^{19}	2.8×10^{19}	1.0×10^{10}	1.12	5.43095	I	D	Si
16.0 4.0 10 ³	$1.64 m_{\rm e}$ $0.28 m_{\rm e}$	$\frac{4.0}{10^{-6}}$	49	1900 101	3900	6.0×10^{18}	1.0×10^{19}	2.0×10^{13}	0.66	5.64613	I	D	Ge
13.1 3.4 10 ⁴	$0.067 m_{\rm e} \\ 0.45 m_{\rm e}$	$\frac{4.07}{10^{-8}}$	10	400 220	8500	7.7×10^{18}	4.4×10^{17}	2.0×10^{6}	1.42	5.6533	D	Z	GaAs
ст <u>т</u>	1 1	s V	cm^2/s	$\frac{\text{cm}^2/\text{(Vs)}}{\text{cm}^2/\text{s}}$	$cm^2/(Vs)$	cm-3	cm-3	cm ⁻³	eV	Å	1	ı	(Unit)

Handbook of Optical Constants of Solids, edited by Edward D. Palik, (1985), Academic Press NY.

Drift velocities for Silicon, assume electrons and holes have the same velocity