Solutions to selected problems in Photonics

Dan Hessman

February 14, 2013

1 Exercise 17.1-4 Extraction efficiency (p. 690)

b) The critical angle when going from a material with refractive index n to air (vacuum) is given by

$$\Theta_c = \sin^{-1}(1/n) \tag{1}$$

The fraction of light that can be extracted is here denoted η_3 and is given by the solid angle of the light cone that does not undergo total internal reflection. It is given by

$$\eta_3 = \frac{1}{2} \left(1 - \sqrt{1 - \frac{1}{n^2}} \right) \tag{2}$$

The table below shows the critical angles and the extraction efficiencies for the various materials.

material	n	Θ_c	$\eta_3 (\%)$
GaAs	3.5	16	2
GaN	2.5	24	4
Polymer	1.5	42	13

c) The combined effect of refraction at the semiconductor-polymer interface and at the polymer-air interface give exactly the same escape cone as the bare semiconductor surface. The enhancement in using a polymer is then either a reduction in Fresnel reflection as discussed in (d) or in the possibility to shape the polymer to a non-planar surface as shown in Figure 17.1-12 (b).

2 Exercise 17.2-5 Amplifier gain and bandwidth (p. 746)

The net gain $\gamma_0(\nu)$ for a (bulk) GaAs amplifier is given by (eq. 17.2-4)

$$\gamma_0(\nu) = \frac{\lambda^2}{8\pi\tau_r} \varrho(\nu) f_g(\nu) \tag{3}$$

At T = 0K the Fermi inversion factor $f_g(\nu)$ becomes

$$f_g(\nu) = \begin{cases} 1 & h\nu < E_{fc} - E_{fv} \\ -1 & \text{otherwise} \end{cases}$$
(4)

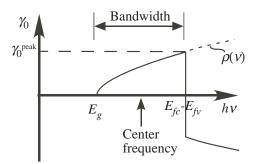


Figure 1: Gain spectrum

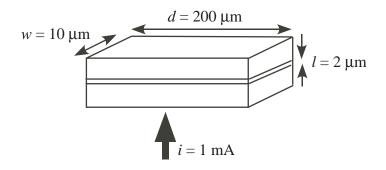


Figure 2: Schematic of the amplifier

We can then plot $\gamma_0(\nu)$ in Figure ??.

A schematic description of the amplifier is given in Figure ??.

This geometry gives a concentration of injected carriers

$$\Delta n = \frac{\tau i}{eldw} = \frac{50 \cdot 10^{-9} \cdot 10^{-3}}{1.6 \cdot 10^{-19} \cdot 2 \cdot 10 \cdot 200 \cdot 10^{-18}} \text{ m}^{-3} = 7.8 \cdot 10^{22} \text{ m}^{-3}$$
(5)

The separation of the quasi-Fermi levels is then (e. g. from exercise 17.1-1)

$$E_{fc} - E_{fv} = E_g + (3\pi^2)^{2/3} \frac{\hbar^2}{2m_r} \Delta n^{2/3} = E_g + 11 \text{ meV}$$
(6)

(Remember the reduced mass m_r defined by $\frac{1}{m_r} = \frac{1}{m_c} + \frac{1}{m_v}$) a) The bandwidth is $E_{fc} - E_{fv} - E_g = 11$ meV or, in frequency, $\Delta \nu = 2.7$ THz. The center frequency is given by

$$\nu_c = \frac{E_g}{h} + \frac{\Delta\nu}{2} = 345 \text{ THz}$$
(7)

The peak net gain γ_0^{peak} is

$$\gamma_0^{\text{peak}} = \gamma_0 (E_{fc} - E_{fv}) = \frac{\lambda^2}{8\pi\tau_r} \frac{(2m_r)^{3/2}}{\pi\hbar^2} \sqrt{\frac{\hbar\Delta\nu}{11 \text{ meV}}}$$
(8)

Here $\lambda = \frac{hc}{E_g + 11 \text{ meV}} = 867 \text{ nm}$ and thus

$$\gamma_0^{\text{peak}} = \frac{(867 \cdot 10^{-9})^2}{8\pi \cdot 50 \cdot 10^{-9}} \frac{(2 \cdot 0.06 \cdot 9.1 \cdot 10^{-31})^{3/2}}{\pi (1.05 \cdot 10^{-34})^2} \sqrt{11 \cdot 10^{-3} \cdot 1.6 \cdot 10^{-19}} \text{ m}^{-1} = 260 \text{ cm}^{-1} \tag{9}$$

b) Number of voice messages: $\Delta \nu/4$ kHz = $7 \cdot 10^8$ (!)

c) Bit rate: 64 kbit/s·7 · $10^8 = 43$ Tbit/s

3 Exercise 17.3-2 Longitudinal modes (p. 747)

As in the previous exercise, the bandwidth is given by the difference between the quasi-Fermi level separation $E_{fc} - E_{fv}$ and the bandgap E_g

$$\Delta \nu = (E_{fc} - E_{fv} - E_g/h = (0.96 - 0.91) \text{ eV}/h = 12 \text{ THz}$$
(10)

The mode spacing is $\nu_F = \frac{c_0}{2nd} = \frac{3 \cdot 10^8}{2 \cdot 3 \cdot 5 \cdot 250 \cdot 10^{-6}}$ s⁻¹ = 170 GHz. The maximum number of modes is therefore $\frac{12 \text{ THz}}{170 \text{ GHz}} = 70$.

4 Exercise 17.3-3 Minimum gain for lasing (p. 747)

The reflection loss coefficient is (eq. 17.3-3)

$$\alpha_m = \frac{1}{2d} \ln\left(\frac{1}{R_1 R_2}\right) \tag{11}$$

To get laser action, the gain coefficient has to be at least as large as the reflection loss coefficient.

The reflectances $R_1 = R_2$ are given by the difference in refractive index of the semiconductor and the surrounding air

$$R_1 = R_2 = \left(\frac{n-1}{n+1}\right)^2 = \left(\frac{3.5-1}{3.5+1}\right)^2 = 0.3 \tag{12}$$

Thus

$$\gamma_0^{\text{lasing}} > \alpha_m = \frac{1}{2 \cdot 500 \cdot 10^{-6}} \ln\left(\frac{1}{0.3^2}\right) \mathrm{m}^{-1} = 24 \mathrm{~cm}^{-1}$$
 (13)