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1 Exercise 16.1-4 EHP injection in GaAs (p. 648)

a) The law of mass action n0p0 = ni
2 gives, with ni = 1.8 · 106cm�3 from Table 16.1-3,

p0 =
ni

2

n0
=

(1.8 · 106)2

1016
cm�3 = 3.2 · 10�4cm�3 (1)

b) The recombination lifetime is given by

⌧ =
1

r(n0 + p0 +�n)
(2)

With low-level injection, this expression is often dominated by the majority carriers.
However, as will be clear in c), this is not the case here. The problem therefore becomes

⌧ =
1

r(n0 + p0 +R⌧)
) ⌧ = � n0

2R
±
r

1

rR
+

(n0)2

4R2
(3)

Putting in the numbers will give ⌧ = 1µs.
c) The excess carrier concentration is �n = R · ⌧ = 1017cm�3 which is larger than

n0.
d) Using the expressions for the quasi-Fermi levels given in Exercise 16.1-3 (p. 645)

we can write

Efc � Efv = Ec + (3⇡2)2/3
~2
2mc

n2/3 � Ev + (3⇡2)2/3
~2
2mv

p2/3 (4)

= Eg + (
1

mc
+

1

mc
)(3⇡2)2/3

~2
2
�n2/3 (5)

where it was assumed that �n � n0 and p0. Inserting the numbers give Efc � Efv =
1.433eV, that is, only slightly more than the bandgap. Due to the di↵erence in e↵ective
mass, Efc will be further in the conduction band than Efv is in the valence band.
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2 Exercise 16.1-8 E-H recombination under strong injec-
tion (p. 678)

The equation that describes the time evolution of the excess charge carriers is

d�n

dt
= R� �n

⌧
(6)

Here we are interested in the time immediately after turning of some high-level injection
source. Thus R = 0 and ⌧ = 1/r�n and therefore

d�n

dt
= �r�n2 (7)

The solution to this di↵erential equation is of the form

�n(t) =
1

A+Bt
) d�n

dt
=

�B

(A+Bt)2
(8)

Inserting these expressions in the di↵erential equation Eq ?? yields B = r. With �n0

denoting the initial excess carrier concentration, i. e. �n0 ⌘ �n(t0) we can write

�n(t) =
�n0

1 + r�n0 · (t� t0)
(9)

Note that eventually the excess carrier concentration will become lower than the equi-
librium majority carrier concentration so that ⌧ will be a constant. This will change the
di↵erential equation and its solution will instead be a ”normal” exponential decay.

3 Exercise 16.2-1 Photon emission rate > absorption rate
(p. 667)

a) The di↵erence between the occupation probabilities for emission, fe(⌫), and for ab-
sorption, fa(⌫), has to be positive for the emission rate to exceed the absorption rate:

fe(⌫)�fa(⌫) = fc(E2)[1�fv(E1)]�[1�fc(E2)]fv(E1) = fc(E2)�fv(E1) = f(E2)�f(E1)
(10)

Here we used the keyword ”thermal equilibrium”, i. e. that the same Fermi-function
f(E) (the same Fermi-level Ef ) characterise both the valence band and the conduction
band. Since the Fermi-function decreases monotonically with increasing energy the dif-
ference f(E2) � f(E1) is always negative if E2 is a conduction band state and E1 a
valence band state.

b) Forming the same di↵erence as in a)we get:

fe(⌫)� fa(⌫) = fc(E2)� fv(E1) =
1

1 + e(E2�Efc)/kT
� 1

1 + e(E1�Efv)/kT
(11)
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This is positive if

e(E2�Efc)/kT < e(E1�Efv)/kT ) E2�Efc < E1�Efv ) h⌫ = E2�E1 < Efc�Efv (12)

where we have used that E2�E1 = h⌫.The result implies that at least one of the quasi-
Fermi levels has to be in the corresponding band. Since the electron mass is normally
smaller than the hole mass, the usual requirement to get an emission rate that exceeds
the absorption rate is that Efc > Ec.

4 Exercise 17.1-1 Quasi-Fermi levels of a pumped semicon-
ductor (p. 685)

a) At T=0K the Fermi-distribution reduces to a step function and the electron concen-
tration can thus be obtained as

n =

Z 1

Ec

⇢c(E)fc(E)dE =

Z Efc

Ec

(2mc)
3/2

2⇡2~3
p
E � EcdE =

(2mc)
3/2

3⇡2~3 (Efc � Ec)
3/2 (13)

where ⇢c(E) was replaced by the normal three-dimensional density of states. Since there
are no thermally generated electrons, we can set n = �n in the expression above which
after some manipulation gives

Efc � Ec = (3⇡2)2/3
~2
2mc

�n2/3 (14)

Similarly

p =

Z Ev

1
⇢v(E)[1� fv(E)]dE =

Z Ev

Efv

⇢v(E)dE =
(2mv)

3/2

3⇡2~3 (Ev � Efv)
3/2 (15)

which, with p = �n, gives

Ev � Efv = (3⇡2)2/3
~2
2mv

�n2/3 (16)

The di↵erence in quasi-Fermi levels is thus

Efc � Efv = Ec � Ev| {z }
Eg

+(3⇡2)2/3(
~2
2mc

+
~2
2mv

)�n2/3 = Eg + (3⇡2)2/3
~2
2mr

�n2/3 (17)

where mr is the reduced e↵ective mass.
b) The occupation function relevant for emission is the product of the probability

that the conduction band state with energy E2 is occupied and the probability that the
valence band state with energy E1 is empty. At T=0 K this simplifies to

fe(⌫) = fc(E2) [1� fv(E1)] ==

⇢
1 E2 < Efc and E1 > Efv

0 otherwise
(18)
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Figure 1: Band structure

How are these di↵erent energies related? Consider the following band structure
Here the e↵ective masses (the ”curvatures”) determine how deep into the bands the

Fermi-levels will be for a given concentration of injected charge

Efc � Ec =
mr

mc
(Efc � Efv
| {z }

�Ef

�Eg) (19)

However, the e↵ective masses also determine how deep into the bands E2 and E1 will
be, given a photon energy h⌫

E2 � Ec =
mr

mc
(h⌫ � Eg) (20)

Thus
Efc � E2 =

mr

mc
(�Ef � h⌫) > 0 if h⌫ < �Ef (21)

The same holds for Efv and E1

E1 � Efv =
mr

mv
(�Ef � h⌫) > 0 if h⌫ < �Ef (22)

Therefore

fe(⌫) =

⇢
1 h⌫ < �Ef

0 otherwise
(23)

We are now ready to plot Figure ??. These plots are similar to Figure 17.2-2. What are
the di↵erencies?
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Figure 2: Occupation function and emission rate
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