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1 Intoduction

In this project, the current through a single electron transistor (SET) will be calcu-
lated using a rate equation model. For simplicity, only one spin-degenerate orbital
in the QD will be considered. After setting up the program, the influence of differnt
parameters (mainly the magnetic field and the tunnel couplings) on the current will
be studied.
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2 Theory

A SET consists of a quantum dot (QD) which is capacitively coupled to a source
and a drain contact (leads) and the current through the transistor can be controlled
by a third electrode, the gate.
In contrast to the approach we used in the lecture, we here calculate the current
through the device using a rate equation.
At finite source-drain bias, electrons can tunnel into and out of excited states. It is
therefore necessary to define an extended dot chemical potential [2]:

µij
N = Ei(N)− Ej(N − 1),

where Ei(N) is the energy of the ith excited N -electron state1. In the following
considerations, many-body states |N, i〉 will be called ’states’ and single-particle
orbitals with energy εk ’orbitals’. Unless a magnetic field is applied all orbitals come
in pairs with the same energy due to spin degeneracy.
When a current is flowing through the SET, the many-body state in the QD will
change as electrons tunnel on and off the dot. To calculate the current through the
SET, the probability PNi

for the dot being in state |N, i〉 is needed. For finding PNi
,

the tunneling rates on and off the dot have to be determined.
The total rate for a tunneling process on the dot, which changes its initial state from
|N − 1, j〉 to |N, i〉, is given by [2]:

WNi,(N−1)j =
∑

r=L,R

Γr
Ni,(N−1)jfr

(
µij

N

)
, (2.1)

where fr

(
µij

N

)
is the Fermi-Dirac function of the left (r = L) or of right (r = R)

electrode and it is included in equation 2.1 because there has to be an available
electron in the lead which can tunnel on the dot.
Γr

Ni,(N−1)j is the tunnel coupling between the dot and one of the leads and Γr
Ni,(N−1)j =

γr
k if the states |N − 1, j〉 and |N, i〉 are connected by a single tunnel event into or-

bital k. Otherwise, Γr
Ni,(N−1)j = 0.

The rate for tunneling off the QD, changing its state from |N + 1, j〉 to |N, i〉, is [2]:

WNi,(N+1)j =
∑

r=L,R

Γr
Ni,(N+1)j

(
1− fr

(
µji

N

))
, (2.2)

1The index i is completely arbitrary.
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2 Theory

where a hole instead of an electron is needed in the lead.
The change of the probability of the SET being in state |N, i〉 with time is given
by the sum of all tunnel processes leading to an occupation of the state, weightend
by the probability PN ′j of the corresponding initial state being occupied, minus the
sum of all tunnel processes depopulating state |N, i〉, weightend by PNi [3]:

ṖNi =
∑

N ′=N±1

∑
j

WNi,N ′jPN ′j −
∑

N ′=N±1

∑
j

WN ′j,NiPNi.

If the applied voltages are time-independent, the probabilities approach a steady
state value in the long-time limit, so ṖNi = 0. Together with the probability nor-
malization condition ∑Ni PNi = 1, all occupation probabilities can be calculated.
The current flowing out of electrode r is then simply given by counting the electrons
tunneling out of that electrode, minus the electrons tunneling in, which is given by
a similar rate as above, weightend by the probability that the quantum dot is in the
corresponding initial state.

2.1 One spin-degenerate orbital

In this project, a single-level QD will be considered. Including spin, there are two
orbitals with energies ε1 and ε2, which are only different if a magnetic field B is
applied. In that case the orbitals split by an amount of ∆E = gµBB (Zeeman
splitting) [1], where g is the g-factor (g = 2.002 in vacuum) and µB is the Bohr
magneton. Figure 2.1 shows the states (a magnetic field is applied) and the possible
tunnel events between them.

Figure 2.1: States and possible tunnel events in a system with one spin-degenerate
orbital. Figure taken from [3].

In our calculations we assume that source-drain voltage is applied symmetrically.
We also set the following parameters (unless otherwise stated): T = 0.3K, γL =
γR = 5 · 109, CΣ = 1.5 · 10−16 F and B = 0T.
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3 Results and Discussion

In this section, we analyse the impact of different parameters on the performance
of the SET. We qualitatively discuss how a magnetic field, a higher or lower to-
tal capacitance of the QD and a different tunnel coupling in the left and in the
right barrier change the current through the SET. Finally, we also comment on the
importance of a low temperature when operating a SET.

3.1 Coulomb diamonds

First of all, we consider the case where no magnetic field is applied, the total capac-
itance of the QD is set to a fixed value (CΣ = 1.5 · 10−16 F), the tunnel coupling in
the left and in the right barrier is the same and the temperature is low (T = 0.3K).
Figure 3.1 a) shows the stability diagram of the SET. A characteristic Coulomb dia-
mond is clearly visible in the middle of the figure. In the left green area no electron
is on the QD, in the Coulomb diamond one electron is on the QD and in the right
green area two electrons are on the QD.
As soon as the two-electron state is accessible, a higher current (yellow/darkblue
area) can flow through the device compared to the case where only the one-electron
state lies in the transport window (orange/light-blue area).
Figure 3.1 b) shows the conductance of the SET. Regions where Isd changes with
respect to Vsd are indicated in light-blue whereas regions where Isd is constant are
depicted in dark-blue.
In figure 3.1 c), Isd is plotted against Vsd at a fixed gate voltage of Vg = −1mV
(this corresponds to a cross-section through figure 3.1 a)). For small source-drain
voltages, the SET is in a blocked state. At some point however, Vsd will be large
enough so that the one-electron state is accessible and the current starts to flow. If
we increased Vsd even more, the two-electron state would also lie in the transport
window giving rise to another increase/decrease in the current. In figure 3.1 d)
(IsdVsd-curve at a fixed gate voltage of Vg = −1mV), this second increase/decrease
can be seen.
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3 Results and Discussion

Figure 3.1: a) Stability diagram and b) conductance plot of the SET at T = 0.3K,
B = 0T and γL = γR. Figure c) shows a cross-section of figure a) at a
fixed gate voltage of Vg = −1mV and figure d) shows the IsdVsd-curve
at Vg = 1mV.

3.2 Application of a magnetic field

As mentioned in the theory section, under the presence of a magnetic field B, orbital
energies are no longer the same for spin up and spin down electrons, but will differ
from the zero field level by ∆E = gµBB.
The splitting of the energy levels associated with the different spins becomes appar-
ent in the conductance plot (figure 3.2 a)) as well as in the IsdVsd-curve (figure 3.2
b)).
In figure 3.2 b), the Zeeman splitting is clearly visible since there are two in-
creases/decreases in the current instead of only one, which was the case without
applied magnetic field (compare to figure 3.1 c)). When the source-drain voltage is
high enough to include the one-electron spin-up state in the transport window, we
get the mentioned second increase/decrease in the current. For even higher source-
drain voltages, there would be two more increases/decreases visible (for the possible
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3 Results and Discussion

two-electron states).
The maximum (saturation) source-drain current should be unaffected by the mag-
netic field, since it is only dependent on the tunneling rates.

Figure 3.2: a) Conductance plot and b) IsdVsd-curve at Vg = −1mV if a magnetic
field of B = 2T is applied.

3.3 Different total capacitances

Figure 3.3 shows that changing the total capacitance CΣ leads to a change in the
Coulomb diamond’s width and height. This is due to the fact that both, the width
and the height are proportional to the charging energy which is in turn inversely
protortional to the total capacitance: EC = e2/CΣ.

Figure 3.3: a) Conductance plot for a total capacitance of the QD of CΣ = 1.5 ·
10−16 F. b) Conductance plot for CΣ = 3 · 10−16 F.
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3.4 Different tunnel couplings

Next, a different tunnel coupling in the left and in the right barrier will be consid-
ered (B = 0T, CΣ = 1.5 · 10−16 F, T = 0.3K). As an example, we set 10γL = γR,
which means that the left barrier is thicker (or higher) than the right barrier.
Figure 3.4 a) shows the conductance in the VsdVg-plane and in figure 3.4 b), Isd is
plotted against Vsd at a fixed gate voltage of Vg = 1mV.

Figure 3.4: a) Conductance plot and b) IsdVsd-curve at Vg = 1mV, if 10γL = γR.

As shown in figure 3.4 b), the current is asymmetric now.
When a positive source-drain voltage is applied so that the chemical potential of the
left lead is above the one-electron orbital in the QD, an electron can tunnel through
the thick barrier on the dot. Since the right barrier is so small the electron will
leave the dot immediately which means that the probability of the dot being empty
is close to one. The current through the SET is high and does not change much
when the two-electron orbital is accessible.
When a negative source-drain voltage is applied so that the chemical potential of
the right lead is above the one-electron orbital in the QD, an electron can tunnel
on the dot quite easily but the current is limited by an electron tunneling off the
dot through the thick right barrier. When the two-electron orbital is accessible, the
current will approximately double.
For large source-drain voltages, the current is the same.

3.5 Temperature

The last parameter we want to focus on is the temperature. When the thermal
energy of the electrons is in the range of the charging energy, the two-electron state
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3 Results and Discussion

in the QD is accessible independent of the applied gate voltage. This is to say that
the gate loses the control over the source-drain current.
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