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Magneto-Characterization of a 2DEG
Ivan Sytsevich & Georg Wolgast

Abstract—This report characterizes the electrical transport in
a two dimensional electron gas (2DEG) using Shubnikov-de Haas
(S-dH) and Hall effect measurements. The measurements have
been done in a low-T fridge with a high perpendicular magnetic
field. From the measurements, carrier density, mobility, Fermi
wavelength and mean free path has been calculated and spin-
separation at high magnetic fields has been observed.

I. INTRODUCTION

THE characterization of low-dimensional structures is im-
portant since before a substrate can be used, its electrical

transport characteristics have to be verified in order to get
reliable data.

This report will describe the theory behind the types of mea-
surements made, how they were made and what was measured.
Afterwards, the results will be analysed and compared to the
theory. Finally, the reason behind the differences between the
results and theory will be hypothesized and a final analysis of
the project as a whole will be made.

II. THEORY

A. Two Dimensional Electron Gas
The sample used for the measurements is a semiconductor

with different layers, see Fig. 1. In order for an electron gas
to be considered 2D, it has to be confined in a space that
is smaller than the mean free path of the electrons in one
dimension. This is achieved by alternating GaAs and AlGaAs
layers, creating a triangular quantum well at the interface. In
order to attract electrons to the well, the AlGaAs is doped
by Si. Even at low-T, some of the donors will be ionized,
creating positive trapped ions that will attract electrons from
the GaAs substrate to the well. The doping level of the Si is
very sensitive, as the dopants will lower the conduction band
of the AlGaAs and can therefore cause parallel conduction in
the AlGaAs.

Fig. 1: Substrate used during measurements. The 2DEG is
measured using the NiAuGe contact. Image from [1].

B. Landau Levels

When the Schrödinger equation is solved in a magnetic
field, the continuous density of states (DOS) is replaced by
δ-functions. These δ-peaks are called Landau levels (LL), see
Fig. 2, and each contains a large number of degenerate states.
These levels will have a non-zero width Γ due to electrons
having a finite quantum lifetime τi given by (1)

Γ =
~
τi

(1)

where ~ is Planck’s reduced constant. The DOS nB in a LL
is given by (2)

nB =
eB

h
=

m

π~2
~ωc per spin (2)

where e is the elementary charge, B is the magnetic field, h
is Planck’s constant, m is the mass and ωc is the cyclotron
angular frequency. ~ωc is the separation of the LLs and as
long as ~ωc < Γ, nB will be relatively constant. However
as B is increased, the separation of the LLs as well as their
heights will increase. As the density of electrons, n2D, will not
change; this will mean that not all LL states will be occupied
as B is increased, given by (3)

ν =
n2D
nB

= 2πl2Bn2D (3)

where ν is the filling factor (the number of occupied Landau
levels) and lB is the magnetic length.

Fig. 2: Landau levels of different Γ. Image from [2].

There will be values of B where ν is an integer given by
(4)

Bn =
hn2D
en

, n ∈ N (4)

where Bn is B at these values and n is the amount of full
LLs. The LLs will create a few interesting effects. [2]

C. Shubnikov-de Haas Effect

By measuring longitudinal resistance Rxx in a 2D system
with an applied, varied magnetic field, the Shubnikov-de Haas
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effect can be seen. As B is changed, it will reach Bn where
nB = 0. The proportionality of Rxx is given by (5)

Rxx ∝ ρL ∝ σL ∝ nB (5)

where ρL is the longitudinal resistivity and σL is the longitu-
dinal conductivity. This means that when B = Bn, Rxx = 0
will also apply. The resulting oscillation with zeroes of Rxx

as a function of B is called the Shubnikov-de Haas effect.
Minima of such oscillations occur at the fields Bn when
ν = n. This happens because longitudinal conduction occurs
at the Fermi level and therefore disappears when the density
goes to zero at B = Bn. Under these conditions, ρL ∝ σL
and therefore vanishes too. Thus, a plot n against the measured
values of Bn gives a straight line with the slope (π~/e) ·n2D
passing through the origin. This is the common way of
measuring the density and also provides a clear demonstration
that a system is two-dimensional [2]. So, in this case:

n2D =
e

π~ · (1/B)
n

(6)

where ratio (1/B)
n is the ratio of the slope in fan diagram

mentioned above.
Another important parameter that characterizes 2DEG in

given semiconductor structure is the mobility of charge-
carriers. The effective mobility is given by (7) [2]

µ =
1

n2DeρL
(7)

where ρL = r0/d. In this case, d = L/W (L - length between
two contacts in the Hall bar, W - cross-sectional area between
two sides of the bar). r0 is resistance without the presence of
magnetic field, which can be obtained from the data.

Fermi wavelength is usually used to describe a wavelength
of electrons that carry the current. Knowing the connected
parameter Fermi wavenumber one can also determine the
Fermi energy, velocity, mean free path and other parameters.
Wavenumber can be deduced in the following way: It is known
that the number of electrons N in quantum wells in 2D
reciprocal space with wave vectors kx and ky is proportional
to:

N

2
= πk2F ·

L2

4π2
(8)

Factor 2 is because the states are doubly degenerate,
k2F = k2x + k2y is the radius of the circle and second factor
resembles spacing between electrons in this reciprocal space.
We can spot that the ratio N /L2 is nothing more than electron
density n2D.

Finally, Fermi wavenumber can be calculated with (9)

kF =
√

2πn2D. (9)

From wavenumber, it is not hard to get to the wavelength
from (10)

λ =
2π

kF
. (10)

Mean free path is also an important characteristic that
describes the distance that electrons in material can travel
before scattering effects occur. It is usually given by (11)

lmfp = vF · τ (11)

where vF is the Fermi velocity, τ is relaxation time.
Relaxation time could be determined from the known for-

mula for mobility:
µ =

eτ

m
(12)

Fermi velocity:

vF =
~kF
m

(13)

In both equations m = m∗m0, where m∗ is the effective
mass. Plugging equations (12) and (13) into (11) gives final
expression for mean free path (14)

lmfp = kF ·
~µ
e
. (14)

D. Quantum Hall Effect

By measuring the transverse resistance Rxy instead, the
quantum Hall effect can be seen. Rxy is independent on
geometry and is given by (15)

Rxy = ρT =
B

en2D
(15)

where ρT is the transverse resistivity. This means that when
B = Bn, (16) applies and Rxy will be quantized.

R−1
xy =

(
e2

h

)
n (16)

The quantum Hall effect is more complex than that, though.
There will be states between LLs, meaning that the plateaus
should not be as well defined or long as they are. However
these are edge states which can only propagate electrons in
one direction. Because of the way the Hall bar in Fig. 3
in built, there will therefore be the same voltage across the
entire top part of the bar decided by the voltage in the input
stage and in the same way the entire bottom will have the
same voltage as the output stage. This means that while the
only available states are edge states, the longitudinal resistance
is 0 and the transverse resistance is constant since there is
no voltage difference along the longitude. This is called the
quantum Hall effect. [2]

Knowing the fact that the charge carrier density remains
constant, it is easy to determine it using non-quantized part of
the hall resistivity versus magnetic field plot and do a regular
Hall effect measurement. From (15), the density of charge
carriers equals to:

n2D =
B

eRxy
(17)

By plotting the Rxy vs B diagram, one could obtain the ratio
between resistance and magnetic field, which is represented
by the slope in the linear part of the plot.

E. High-Field Effects

In high B fields, the Landau peaks will begin to split up due
to spin. This will cause splitting in Rxx, as will be shown later
in Fig. 5 and 8a in Section IV. As the field grows, splitting
becomes more apparent.
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III. EXPERIMENTAL METHOD & SETUP

Fig. 3: The Hall bar sample used for the measurements.

The sample that was used in experiments is showed on
Fig. 3. The alternating current flows from contact 1 to 2.
The contacts used in measurements are labeled 3, 4 and 5,
with 4 and 5 measuring Shubnikov-de Haas voltage, 3 and 4
measuring Hall voltage. To see quantum-mechanical behaviour
of electrons in magnetic field, the sample was kept in the fridge
”Triton 200” under the temperature of 13 mK.

Further, the circuit details used in measurements are de-
scribed. A current source was provided by 4 V oscillation
from SRS830 lock-in dropped across 1:100 voltage divider
and then forced through 10 MΩ resistor to get the value of
4 nA. Current out of the Hall bar was monitored using a
EG&G 5209 lock-in amplifier and had a steady value of 4 nA
throughout the measurements. Both Hall and Shubnikov-de
Haas voltages were on their own SRS830 lock-in amplifier.

IV. RESULTS & DISCUSSION

A. Charge Carrier Density of 2DEG

With measurements done, the Hall and Shubnikov-de Haas
resistances were plotted against magnetic field. Fig. 4 rep-
resents the low-field measurements, while Fig. 5 covers the
high-field regime. By using techniques described in Section
II, charge carrier densities were calculated with Shubnikov-de
Haas measurements as well as Hall‘s.

Fig. 4: Low-Field Hall and S-dH Resistance.

Fig. 5: High-Field Hall and S-dH Resistance.

1) Hall effect data analysis: With Hall effect resistance
being linear in low-field range, we can do basic Hall mea-
surements to determine charge-carrier density of our 2DEG.
Measured values for output Hall voltage were divided by the
value of current equal to 4 nA which ran through the bar. The
resulting resitance values were plotted against magnetic field.
The slope of the linear part represents the ratio R/B as it is
shown on Fig. 6.

Fig. 6: Rxy vs. B diagram for Quantum Hall effect.

Thus, by using equation (17), the value for electron density
was obtained: nH = 1.80 · 1011 cm−2.

2) Shubnikov-de Haas data analysis: To get to the value of
charge density using Shubnikov-de Haas effect data, usually
more steps are required. Like in Hall‘s, Shubnikov-de Haas
resistance was plotted (See green curve in Fig. 4 and Fig. 5.)
To get a clear view of minima of Shubnikov-de Haas resistance
oscillations, it is often convenient to plot R as a function of
1/B (Fig. 7).
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Fig. 7: Rxx vs. 1
B diagram for Shubnikov-de Haas effect.

Note that the first few minima in such plot could be
deceiving due to spin splitting nature of Landau levels in
higher fields. By labeling few minima and plotting them
against corresponding values of magnetic field, one could get
a straight line with slope (1/B)

n , as was discussed in Section II.
Thus, by applying the formula (6), value for density can be

calculated: nS = 1.81 · 1011 cm−2. Both measurements are
in good connection with theoretical data (grower‘s expected
value = 1.8 · 1011 cm−2).

One can also note that the densities are almost the same
for Hall and Shubnikov-de Haas, which also approves the fact
that measurements were done correctly, density of electrons
in 2DEG should be a constant value.

B. Calculating mobility, mean free path and Fermi wavelength

We will use Shubnikov-de Haas measurements to calculate
the value for the mobility of charge carriers in this 2DEG.
Knowing the electron density, by using (7) it is not hard to
obtain µ = 2.6905·106 cm2

V ·s . Expected value is equal to 2.6860·
106 cm2

V ·s , which confirms the validity of the method described
in Section II.

By using the obtained value for the charge carrier density,
the Fermi wavenumber and thus Fermi wavelength can be
calculated from (9) and (10) to kF = 1.06 · 108 m−1.
λF = 5.92 · 10−8 m = 59.2 nm, which is a reasonable

value, considering the fact that in semiconductor structures,
Fermi wavelengths lie within the range 10 - 100 nanome-
ters [3].

The value of mean free path was calculated using (14) and is
equal to lmfp = 18 µm. This is also quite reasonable result,
considering high mobility value for electrons in this 2DEG
which was obtained before as well as previous measurements
in this type of semiconductor structures [1].

C. High-Field Data Analysis

A second experiment involved Shubnikov-de Haas and Hall
resistance measurement in high-field region, see Fig. 8a. In the
high-field regime, interesting effects start to occur. In low B-
fields, ν as a function of 1

B will yield steps of 2 ν at a time as
a result of spin. However, at high fields spin separation starts
to occur and we can start to resolve steps of 1. By looking at

the max value of ν where we still can see the plateaus in Fig.
8b, we can see that there are 22 resolvable LLs in the sample.

(a) High-field range. Red line represents the border between spin
separated and non-separated levels.

(b) Lower field range. In this case, red line represents the end of the
last resolvable Landau level.

Fig. 8: Filling factor as a function of 1
B .

V. CONCLUSIONS

In this project characteristics of two dimensional elec-
tron gas were studied, using the semiconductor structure,
represented at Fig. 1. The measurements were done at the
temperature range of 13− 20 mK, which allowed us to see a
quantum-mechanical behaviour of electrons in magnetic field,
quantum Hall effect and Shubnikov-de Haas effect. Comparing
the form of obtained resistance curves to the ones plotted in
Fig. 6.10 in [2], it is safe to say that measurements were
done correctly. There are some differences, however that is
because the measurements in [2] were done at 1.13 K and
the measurements done for this report, while in a fridge at
13 mK, the electrons themselves were around 0.5 K due to
being heated by high frequency noise. Later, using the data, we
managed to determine the important parameters of electrons
in 2DEG such as electron density, mobility, mean free path
and Fermi wavelength. All of these values correspond nicely
to provided theory and previous experimental results, which
approves the validity of the methods used in calculations.
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