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1 Optical transitions and Fermi’s golden rule

To include the effect of light in a quantum mechanical description, the electromagnetic
field is generally described by the appropriate vector potential A. Let us choose

A = e
2E0

ω
sin (Q ·R− ωt) (1)

with the corresponding electric field

E = −∂A
∂t

= e2E0 cos(Q ·R− ωt) (2)

This is the electric field in an electromagnetic wave propagating in Q-direction and with
a polarization e. The corresponding photon flux (i. e. the number of photons per time
and area) is

Φ0 =
2ε0cnE2

0

~ω
(3)

The Schrödinger equation including the vector potential is[
(p̂ + eA)2

2m0
+ Vcrystal

]
Ψ = i~

∂Ψ
∂t

(4)

Expanding the squared parenthesis

(p̂ + eA)2 = p̂2 + ep̂ ·A + eA · p̂ + e2A2 (5)

The last term is of second order and, assuming a weak field, is usually neglected. More-
over, the second term can be modified by noting that the momentum operator is essen-
tially the divergence which is zero for a transverse wave:

ep̂ ·AΨ = −i~e∇ · (AΨ) = −i~e(A · ∇Ψ + Ψ∇ ·A︸ ︷︷ ︸
=0

) = eA · p̂Ψ (6)

The Schrödinger equation Eq 4 can now be written[
Ĥ0 + V̂EM

]
Ψ = i~

∂Ψ
∂t

(7)
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with

Ĥ0 =
p̂2

2m0
+ Vcrystal (8)

V̂EM =
eA · p̂
m0

=
2eE0

m0ω
sin(Q ·R− ωt)e · p̂ (9)

where V̂EM can be treated as a perturbation. The wavelength of the light is much
longer than the extension of the wavefunctions (or, for de-localised states, the unit cell)
and the electric field is therefore assumed to be spatially constant on the quantum
mechanical lengthscale. This means that we can put Q = 0, the so called electric
dipole approximation. Using this and rewriting the sin-function with exponentials, the
perturbing term becomes

V̂EM =
eE0

im0ω
e · p̂

(
e−iωt − eiωt

)
(10)

Fermi’s golden rule is an approximation describing the probability for a transition
between two (unperturbed) states when exposed to a perturbation. If the perturbation is
of the form given above, i. e. with a harmonic time dependence, it can be shown that the
first term in Eq 10 gives rise to absorption and the second term gives rise to stimulated
emission. We will first limit the discussion to absorption and thus only include the first
term in Eq 10. Using Fermi’s golden rule, the transition rate Wji from a state |i〉 to a
state |j〉 due to absorption of a photon is given by:

Wji =
2π
~

(
eE0

m0ω

)2 ∣∣∣〈j|e · p̂|i〉∣∣∣2δ(Ej − Ei − ~ω) (11)

The operator e · p̂ in the matrix element should be understood as

e · p̂ = (expx + eypy + ezpz) = −i~
(
ex

∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z

)
(12)

For example if the light is polarized along the x-direction (ex = 1, ey = ez = 0) the
matrix element will be 〈j|px|i〉.

The absorption α due to the excitation of an electron from state i to state j is now
given as the number of transitions (i. e. the number of photons disappearing) normalized
to the incoming number of photons

α =
Wji

Φ0Ω
=

πe2

m2
0ωε0cnΩ

∣∣∣〈j|e · p̂|i〉∣∣∣2δ(Ej − Ei − ~ω) (13)

Ω is a normalization volume and, as we will see later, it will in general cancel out when
evaluating the matrix element. Instead of using the absorption coefficient α Davies
uses the real part σ1 of a complex conductivity σ̃ = σ1 + iσ2. These two quantities
are related by σ1 = αε0cn. Another quantity describing light-matter interaction is the
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complex refractive index ñr = nr + iκr. It can be defined by the dispersion relation
between wave number q and frequency ω

q =
ñrω

c
=
nrω

c
+ i

κrω

c
(14)

A wave with this wave number can be written as

eiqx = ei
nrω
c
xe−

κrω
c
x (15)

which (due to the second exponential function) is an exponentially damped wave. The
damping is determined by κr and can e. g. be due to absorption. In an excercise it its
shown that α = 2ωκr/c.

2 The matrix element within the effective mass approxi-
mation

Within the effective mass approximation, the wave function can be written as a product
of an envelope function and a Bloch funcion

Ψ(R) = Ω
1
2χ(R)un0(R) (16)

The normalization volume Ω is introduced to properly normalize Ψ (provided that χ
and un0 are normalized). Using this wave function, the matrix element in Eq 13 can be
written

〈j|e · p̂|i〉 = Ω
∫
χ∗j (R)u∗j0(R)(e · p̂)χi(R)ui0(R)d3R (17)

Since the momentum operator is a first derivative, we can use the product rule to get

〈j|e · p̂|i〉 = Ω
∫ [

χ∗j (R)χi(R)
] [
u∗j0(R)(e · p̂)ui0(R)

]
d3R

+Ω
∫ [

u∗j0(R)ui0
] [
χ∗j (R))(R)(e · p̂χi(R)

]
d3R (18)

The envelope functions vary slowly on the scale of a unit cell (or lattice constant). By
splitting the integrals in Eq 18 into sums of integrals, each one with an integration
volume of one unit cell, then the envelope functions are approximately constant. The
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first term in Eq 18 can thus be written

Ω
∑
# of
cells

χ∗j (R)χi(R)
∫

one
cell

u∗j0(R)(e · p̂)ui0(R)d3R

=Ω
∑
# of
cells

χ∗j (R)χi(R)
Ωcell

Ω

∫
Ω
u∗j0(R)(e · p̂)ui0(R)d3R

=
∫

Ω
χ∗j (R)χi(R)

∫
Ω
u∗j0(R)(e · p̂)ui0(R)d3R

=〈χj |χi〉〈uj0|e · p̂|ui0〉 (19)

Here we used that the Bloch functions are lattice periodic and thus give the same con-
tribution in every unit cell. Ωcell is the volume of a unit cell and cancels out when
converting the summation over cells with an integral. The second term in Eq 18 can be
rewritten in a similar way. The total matrix element will therefore be

〈j|e · p̂|i〉 = 〈χj |χi〉〈uj0|e · p̂|ui0〉︸ ︷︷ ︸
interband transition

+ 〈χj |e · p̂|χi〉〈uj0|ui0〉︸ ︷︷ ︸
intraband transition

(20)

As indicated in 20, the first term describes transitions between two different bands. This
can be understood by considering that for transitions from e. g. valence to conduction
band, uj0 and ui0 are orthogonal (remember: Eigenstates of the same Hamiltonian) and
thus the second term in Eq 20 vanishes, leaving

〈j|e · p̂|i〉 = 〈χj |χi〉 〈uj0|e · p̂|ui0〉︸ ︷︷ ︸
≡e·pji

(21)

The matrix element of the Bloch functions, pji, can be seen as a material constant. The
case of transitions between two states within the same band, i. e. intraband transitions,
is governed by the second term of 20 and will be discussed later. First, however, let us
investigate interband transitions in a quantum well.

3 Application to a quantum well: Interband transitions

The envelope function for a quantum well consists of a planewave parallel to the well
and a bound state perpendicular to the well

χnk(R) = A−1/2eik·rφn(z) (22)

The matrix element will now be

〈j|e · p̂|i〉 = e · pcn,vm〈k′|k〉〈cn|vm〉
= e · pcn,vm︸ ︷︷ ︸

A

δ(k′ − k)︸ ︷︷ ︸
B

〈cn|vm〉︸ ︷︷ ︸
C

(23)
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The factor A gives the polarization dependence, which for som experimental conditions is
different for light and heavy holes. The factor B confirms what we have already guessed,
namely that only vertical transitions are allowed, i. e. that the in-plane momentum is
conserved. The factor C gives rise to some selection rules.

3.1 Selection rules

The transition probability is zero for some combinations of initial and final states. This
gives rise to selection rules: only certain transitions are allowed. The selection rules in
band-to-band transitions are determined by the overlap between the envelope functions,
〈cn|vm〉. Investigating this overlap, we can list the following selection rules:

• The electron and hole state have to be of the same parity, provided that the
potential is symmetric.

• If the well for electrons and holes are identical (i. e. ∆Ec = ∆Ev and same m∗)
then only transitions with the same quantum number for the electron and hole
states are allowed (〈cn|vm〉 = δn,m, ”The ∆n = 0 rule”).

• Also when the electron and hole wells are not strictly identical, ∆n = 0 usually
gives the strongest transitions.

3.2 Absorption spectrum

Let us now return to the absorption expression Eq 13, which, using the matrix element
Eq 23 for inter band transitions in a quantum well, will be

αnmk′k =
πe2

m2
0ωε0cnΩ

∣∣∣e · pcn,vm∣∣∣2∣∣∣〈cn|vm〉∣∣∣2δ(k′ − k)δ(Ecn(k′)− Evm(k)− ~ω) (24)

Note that this is the absorption of light due to transitions from an initial state |mk〉 to
a final state |nk′〉, as indicated by the subscripts on α. The ”normal” absorption at a
given photon energy ~ω, as can be measured experimentally, is obtained by summing
over all initial and final states

α =
πe2

m2
0ωε0cnΩ

∑
n,m

∣∣∣e · pcn,vm∣∣∣2∣∣∣〈cn|vm〉∣∣∣22
∑
k′,k

δ(k′ − k)δ[Ecn(k′)− Evm(k)− ~ω]

=
πe2

m2
0ωε0cnL

∑
n,m

∣∣∣e · pcn,vm∣∣∣2∣∣∣〈cn|vm〉∣∣∣2 2
A

∑
k

δ[Ecn(k)− Evm(k)− ~ω]︸ ︷︷ ︸
joint density of states

(25)

Here the normalization volume Ω was split into an area A and a length L. The factor
2 is due to spin. Assuming parabolic bands, the (optical) joint density of states nopt
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becomes

nopt(~ω) =
2
A

∑
k

δ[Ecn(k)− Evm(k)− ~ω]

=
2
A

∑
kx,ky

δ[Ec + εcn +
~2(k2

x + k2
y)

2m∗cn
− Ev + εvm +

~2(k2
x + k2

y)
2m∗vm

− ~ω]

=
2
A

∑
kx,ky

δ[Eg + εcn + εvm +
~2(k2

x + k2
y)

2m∗nm
− ~ω] (26)

where εcn and εvm are the confinement in z-direction for electrons and holes and m∗nm
is the reduced effective mass defined by 1/m∗nm = 1/m∗cn + 1/m∗vm.

4 Application to a quantum well: Intersubband transitions

Assuming that there is a charge carrier (electron or hole) in the quantum well, an
incoming photon can promote the charge carrier to an excited state. In this case, both
initial and final states are in the conduction band. This is an example of an interband
transition, also called intersubband transition. Repeating Eq 20 with the two states
originating from the same Bloch function, i. e. uj0 = ui0:

〈j|e · p̂|i〉 = 〈χj |χi〉 〈ui0|e · p̂|ui0〉︸ ︷︷ ︸
=0

+〈χj |e · p̂|χi〉 〈ui0|ui0〉︸ ︷︷ ︸
=1

(27)

The second term will no longer vanish but instead the first term will be zero. This is
because ui0 is the wavefunction of a bulk electron at k = 0 and the matrix element with
p̂ is therefore the expectation value of the momentum of an electron at the concuction
band minimum. As with all band minima (and maxima) the momentum should be zero.
The transition probability in the case of an intraband transition is thus determined by
the momentum matrix element of the envelope functions. As in the case of interband
transitions, the envelope function for a quantum well can be written as a product of a
planewave parallel to the well and a bound state perpendicular to the well (Eq 22).

χnk(R) = A−1/2eik·rφn(z) (28)

Assume now that the polarization vector is in x-direction. Then

e · p̂ = px = −i~ ∂

∂x
(29)

e · p̂χnk = ~kxχnk (30)
〈mk′|e · p̂|nk〉 = 〈mk′|nk〉︸ ︷︷ ︸

orhtogonal

= 0 (31)
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The result is the same for polarization in y-direction. However, assuming z-polarization
yields

e · p̂ = pz (32)
〈mk′|e · p̂|nk〉 = 〈k′|k〉︸ ︷︷ ︸

δ(k′−k)

〈m|p̂z|n〉 (33)
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